

Instrument Synthesis & Analysis Laboratory

H. John Wood Goddard Space Flight Center Optics Branch, Code 551 Greenbelt, MD 20771

Optical Society of America October 10 - 14, 2004

NASA GODDARD SPACE FLIGHT CENTER

Acronym List

Instrument Synthesis and Analysis Laboratory

- AO Announcement of Opportunity
- · CAD Computer Aided Design
- COBE Cosmic Background Explorer
- · DIRBE Diffuse Infrared Background Experiment
- · DMR Differential Microwave Radiometers
- · EXIST Energetic X-ray Imaging Survey Telescope
- · FIRAS Far Infrared Absolute Spectrometer
- FTE Full-Time Equivalent
- GSFC Goddard Space Flight Center
- GPM Global Precipitation Measurement
- GEO Geosynchronous Earth Orbit
 HEO Highly Elliptical Orbit

- HST Hubble Space Telescope
 IDC Integrated Design Capability
 IMDC Integrated Mission Design Center
- · ISAL Instrument Synthesis & Analysis Laboratory
- JWST James Webb Space Telescope
- LOE Level of Effort
- NGST Next Generation Space Telescope
- SDO Solar Dynamics Observatory
- STS Space Transportation System
 TDRSS Tracking and Data Relay Satellite System
- WFF Wallops Flight Facility

cher 10 - 14, 2004

ISAL Overview

H. John Wood

Why an Integrated Design Capability?

- Previous concept design process:
 - Too many meetings
 - Too many people
 - Too low on the priority totem pole
 - Tied up too many resources
 - Took too long to complete
 - Incomplete collaboration
 - between disciplines inconsistent or non-

convergent results

Infrequent interaction with the "customer"

Did not always meet customer needs or expectations

Gradie: 10 - 14, 2004

ISAL Overview

H. John Wood

7

Proven state-of-the-art engineering...

Instrument Synthesis and Analysis Laboratory

• Reduced cost and schedule for development of end-to-end space mission and remote sensing conceptual designs

- Previous engineering process:
 - Study duration: ~ 6 months
 - Level of effort (LOE): 2.5 FTEs

IDC engineering process:

- ISAL study duration: 1 2 weeks
- ISAL approx. LOE: ∼0.3 FTE

• IMDC study duration: 4 - 5 days

• IMDC approx. LOE: ~0.3 FTE

NASA

October 10 - 14, 2004

ISAL Overview

H. John Wood

r8

Proven state-of-the-art engineering con't

Instrument Synthesis and Analysis Laboratory

• Increased capabilities and improved consistency across studies

- Hands on involvement of the customer in the design process
 - Customer needs and/or expectations routinely met or exceeded
- Concurrent engineering environment
 - All disciplines working together and all at the same time
 - Consider all aspects of the mission life-cycle at the same time

Increased and improved collaboration between subsystem disciplines

Infuse the end-to-end system perspective into the entire team

Improve product consistency, quality and system level convergence
Improve technology infusion, especially for cross-discipline items

NASA

October 10 - 14, 2014

ISAL Overview

H. John Wood

20

IDC Competencies -Broad, Diverse, Customer Driven

Integrated Mission Design Center

- LEO, HEO, GEO, libration orbits, interplanetary and deep space, balloon
- Single spacecraft missions, formation flying, constellations, distributed systems
- Uncontrolled or controlled deorbit and recoverable payload modules
- Expendable vs. non-expendable launch

Custom vs. commercial spacecraft tradeoffs Nanosats to large satellites

Instrument Synthesis & Analysis Laboratory

Analysis Laboratory

- Imagers, Cameras
- Spectrometers
- Lidars
- Gamma-Ray to IR Telescopes
- Solar Physics Instruments, Spectroheliographs
- Passive or Microwave Radiometers
- Optical Molecular Sensors
- Planetary & Lunar Orbiter Instruments
- Large Weather Satellite Instruments
- Geochemistry experiments

October 10 - 14, 2004

ISAL Overview

H. John Wood

216

IDC Strategic Benefits

- First line of engineering analysis for Directorate/Center sanity check
- First responder team for evaluating and assessing potential GSFC new work
- In place, efficient as well as flexible, operational design environment to mature design concepts
- Produce mature design concepts that improve competitive position and provide firm basis for future life cycle activities
- "Hands on" involvement of the customer in the design process resulting in conceptual designs that better meet customer needs

NACA

October 10 - 14, 2014

ISAL Overview

H. John Wood

111

Strategic Benefits con't

Instrument Synthesis and Analysis Laboratory

- Cross life-cycle support
 - Lead trade study execution and/or maturing of design concepts
 - Support Tiger Team and/or Red Team activities
 - Support Confirmation Review preparation and evaluation
 - Support acquisition evaluations
 - Support risk mitigation process
- Technology Support
 - Identification and/or evaluation of enabling technologies
 - Mechanism for infusing new technologies into future concepts
 - Technology roadmap development

NASA

October 10 - 14, 2004

ISAL Overview

H. John Wood

pl:

Why go to the ISAL?

Instrument Synthesis and Analysis Laboratory

• Clear Proven Objectives

Successful History

•Unprecedented Resources

NASA

October 10 - 14, 2004

ISAL Overview

H. John Wood

013

Clear Objectives

Instrument Synthesis and Analysis Laboratory

- To provide a rapid and sustainable instrument development environment with clear, efficient processes and skilled engineers.
- To provide a capability for quick and efficient trade studies of instrument architectures and concepts.
 - Supports different maturity levels
 - Direct AO response
 - Trade Studies in advance of AO
 - Instrument Incubator Program projects
 - Space Exploration Studies new NASA Directives

To streamline and optimize instrument system design for Phase A, including cost, risk and technology assessment.

MACA

October 10 - 14, 2004

ISAL Overview

H. John Wood

p14

Successful History Instrument Synthesis and Analysis Laboratory

- Operational facility since Spring 1999
- Completed more than more than 60 studies since its inception
- •Experience with Earth Science, Space Science and Space Exploration instrument projects
 - Aquarius (Sea Salinity Study) selected for Earth Science
 - SDO and GPM have asked for designs
 - **EXIST** selected as part of the decadal plan by the **National Academy** of Sciences
 - NGST (now JWST) early studies done in the ISAL

NASA

October 10-14, 2014

ISAL Overview

H. John Wood

115

Unprecedented Resources

Instrument Synthesis and Analysis Laboratory

- · Cadre of highly-skilled discipline engineers
 - Collaboration of clients, discipline engineers, and scientists to discuss concept viability
 - Provide customized level of service
 - Detailed designs with significant analysis
- State of the Art Facility
 - Strong Leadership Team
 - Unified ISAL management and operations with the Integrated Mission Design Center (IMDC) to form the Integrated Design Capability (IDC) in Spring 2001

NACI

October 10 - 14, 2004

ISAL Overview

H. John Wood

p16

